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Context – Experimental observations (1/2)
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AUG DIII-D

Current quench spectogram 
AUG#35618 [P. Heinrich] 

Spectograms of DIII-D
[Lvovskiy, PPCF, 2018]

Present day tokamaks already observe 
post-disruption modes
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Current quench spectogram of JET 
#89141. [S. Newton, P. Pölöskei]

JET

Present day tokamaks already observe 
post-disruption modes

Context – Experimental observations (2/2)

Spectrogram of JET 42976-DI/C1F-CHAN8/131
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Current quench spectogram of JET 
DT shot #42976. [S. Sharapov] 4



Alpha particles – velocity distribution
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Fusion born alpha population is energetic 
by nature:

Fig. 1
CODION¹ simulation: Isotropic alpha particle velocity 
distribution for ITER 15MA scenario² #2

v α≈13 ⋅10
6m /s > v alfven=B /√ μ0mini

¹Embreus, PoP, 2015     ² Polevoi, IDM, 2002     ³ Pinches, PoP, 2015

  α birth velocity                    Alfvén phase velocity  

Simulations³ show weakly unstable 
modes in ITER quiescent phase

Hypothesis
Post-disruption damping* drops faster 

then post-disruption alpha drive

*damping dominated by Landau damping ~ exp(-T)



Alpha particles – delayed thermalization
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VIDEO
CODION¹ simulation: initial alpha distribution undergoing 
thermal quench. 

¹Embreus, PoP, 2015

Consider ‘worst case’, unmitigated disruption:

with Fokker-Planck solver CODION¹

Collisional cooling ineffective for energetic 
particles

Resonances possible far into the thermal quench

T (r , t )=T f + [T (r ,0 )−T f ]exp (−t /t0 )



MHD spectrum 
& damping

Plasma equilibrium

Eigenmodes

…

Pressure
profile

Current 
density
profile

LIGKA¹

VMEC²

GO³

¹Lauber, JCP, 2007

²Hirshman, CPC, 1986

³Papp, NF, 2013
³Vallhagen, JPP, 2020

Workchain towards post-disruption Eigenmodes

CODION
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Current density profile j(r,t) 
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GO code solves the induction equation in 1D
→ Electric field diffusion
→ RE generation 

j(r,t)

Fig.3
Resulting profiles of safety factor q, current 
density j and integrated current I.

t
N 

= 3

Fig.2
Currents of an unmitigated disruption identified by T

f
=3eV 

and t
0
=0.7ms and its background temperature

Mode 
evolution

6

8

T ~ 100 eV: Alphas thermalize 

T < 100 eV : Avalanching
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Eigenmodes in the ideal MHD spectrum 

LIGKA tool employed:

 found frequency gaps for TAEs (and BAEs) 
in the ideal MHD spectrum

 scan over absolute scaling of q-profile (fig. 
6a) shows vast availability irrespective of q

0
 

Fig.4
Radial location of the 
frequency gaps of 
toroidal mode number 
n=m TAEs  as a 
function of q

0
.

n

q
0
=1.07 chosen 

n=[7−15 ,22−26 ]

m= [ {(n−2 )− (n+4 ) } , {(n−2 )− (n+6 ) }]
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α-population

HAGIS¹

¹Pinches, 
CPC, 1998



Active mode evolution
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HAGIS calculates non-linear wave-particle interaction 

Fig.5
Evolution of mode amplitude 
δB/B as caused by resonant 
interaction with f

SD
 in multi-

mode simulation. 

evolves mode through EPs and 
redistributes EPs through modes

max(δB/B) ~ 0.1%
before RE avalanching

1%



Mode effects on RE dynamics
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max(δB/B) ~ 0.1%
before RE avalanching

→effects on RE dynamics? 

¹[Lier, NF, 2021]
²[Svensson, JPP, 2021]
³[Schneider, NF, 2019]

● HAGIS simulation indicating RE radial transport¹

● Study² found (stochastic) mag. Perturb (~0.05%) 
sufficient for RE avalanche suppression

● Further study: use ASCOT³ to determine transport 
coefficients as a function of (E,ƛ,r) for REs 



Outlook – Limiting assumptions
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Proof of principle stage¹:

● Unmitigated disruptions

● Perfect alpha particle 
confinement

¹[Lier et al, NF 2021]

Ongoing work:

● (simple) mitigated scenarios

● Alpha particle transport



Ongoing work – Addressing limiting assumptions
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1. Mitigated disruptions

To assess the increased parameter 
space:
 

Alpha distribution now calculated by 
analytical model (O. Embreus)

f α(r , t , v)

T (r , t ) , ne(r , t )

Fig
Analytical (dashed) vs CODION (dashed) results 
for alpha population in mitigated disruption 

Ion composition secondary to 
collision dynamics

→ use ions to tune v
A
?

n
inj

 = 7n
e

t
0
   = 1 ms



Ongoing work – Addressing limiting assumptions
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2. Alpha particle transport

Avoid MHD simulations for the entire 
parameter space:
 

Solve diffusion equation

with 

and scan D
0
 for stochasticity

∂u (r , t)
∂ t

=D (t )
∂
2u(r , t)

∂ r2

D (t )=D0 exp(−t / t 0)
1

¹[Linder, 2020, NF]



Ongoing work
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Scanning over 
t
0

n
e

D
0

and evaluate pressure 
gradients (strength, location)

→ Is there an optimal 
mitigation scenario? 
A strongest mode we 

can drive?



Summary & Outlook
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 Showed survivability of the energetic tail of a fusion-born alpha population far 
into the thermal quench 

 The post-disruption MHD spectrum shows availability of a wide range of 
Toroidal Alfvén Eigenmodes which experience low damping

 Wave-particle interaction showed those TAEs to be driven unstable by the 
alpha population up to amplitudes of δB/B = 0.1% 

 The modes driven indicate a capability to enhance RE transport → effect on RE 
dynamics (suppression?)

 Ongoing work: Analytical model to scan big parameter space (mitigated 
disruptions) and search for optimum for this mechanic



 Backup – Ongoing work
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Scanning over 
t
0

n
e

D
0

and evaluate pressure 
gradients (strength, location)

→ Is there an optimal 
mitigation scenario? 
A strongest mode we 

can drive?



Backup – Ongoing work
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Backup - Mode effects on a RE seed
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Which mode amplitudes to choose? 
We are already 3t

N
 into the disruption and at 6t

N
 

damping and avalanching becomes significant.   

Fig.9 
Currents of an unmitigated disruption identified by 
T

f
=3eV and t

0
=0.7ms and its background temperature 

Mode 
Evolution

Mode 
Evolution

RE
Interaction

RE
Interact



Backup - Mode effects on a RE seed

Throughout interaction measure changes to the 
toroidal angular momentum

as indication to changes of radial position.

Pϕ ( p|| ,Ψ p )
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RE seed initialized:

Ekin=[10 keV −30MeV ]

λ≡v∥/ v=[0−1 ]
r / a= [0.05−0.45 ]

Each triple combination 
represented by 25 REs, 

uniformly distributed 
along torus.

Σ#REs = 10000

Fig.10
Ensemble-averaged change to P

Φ 
of the RE 

seed as caused by the TAEs.
X and y-axis show initial RE attributes, color 
indicates change after t

N
=2. The Radii of the 

circles are the initial radial position of the 
particle in r/a=[0.05-0.45] in steps of 0.1. 



Backup – mode structures
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Mode structures for q
0
 = 1.07

→ total structure is core                 
     localized along flat shear 

Fig.6
Selected TAE modestructures for 
q

0
=1.07. Normalized amplitude of the 

real part with respective frequencies 
ω

TAE
 [kHz]. b) shows m=n,n+1 

coupling and c) shows m=n+1,n+2 
coupling.

¹[Kerner, JCP, 1998]
²[Gorelenkov, PS, 1992]

Damping strengths ɣ/ω [s-1/s-1]:
 Landau+radiative (LIGKA) ~ 0.1% 

(t
N 

= 3)
 Fluid damping (CASTOR¹) ~ 1% 

(t
N 

= 8)
 Collisional damping² ~1% (t

N 
= 6)

α-pressure 
core-peaked 

RE-generation
core-localized 

¹Pinches, 
CPC, 1998



Backup – JET supershot

Spectrogram of JET 42976-DI/C1F-CHAN8/131
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 Case of lower B
T
 shows strong coherent 

magnetic oscillations:

 Toroidal Alfvén Eigenmode (TAE) identified 
as the cause of runaway electron 
suppression

 Studies [1] estimated turbulence threshold 
level dB/B ~ 0.1% for suppression 

Backup – TEXTOR case
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Fig.1: Plasma current evolution and Mirnov coil 
signals from TEXTOR shots #115207-8 (2013)

[1] Zeng, PRL, 2013

ITER: could alpha particles provide drive 
for RE-suppressing modes?



Backup – pressure profile

Fig.2
CODION simulation: Initial fusion born alpha particle 
population on axis fα(v,0,0)

p (r ,t )=ne T e (r , t )+nD, T T i (r , t )+ pα (r ,t )

pα (r , t )=
mα

3
∫ v4 f α ( v , r ,t )dv

CODION is 0D in space: Each of the 100 radial 
points is populated by velocity distributions f

α
(v,r,t) 

advancing independently in time 

with

ne=nD, T=10
20 [m−3 ]

and

T (r , t )=T f+[T (r ,0 )−T f ] exp (−t / t 0 )

27

Assumes case of good post-disruption 
confinement, as is also necessary for RE beam 



Backup - active mode evolution
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Energetic part of CODION obtained 
data is fitted with the analytic slowing 
down formula¹ f

SD

f SD (r , v ,t N=3 )=
C (r )

v c
3

(r )+v3
Erfc(

v −vα

Δ v (r ) )

¹Gaffey, JPP, 76

Fig.7
Pressure and temperature profiles for t

N
=3.

 
Note that 

p
α,EP

 is used for mode drive, not p
α
, since the latter is 

misleading (due to CODION particle conservation)



Backup plots
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